

# DRINKING WATER QUALITY ANNUAL REPORT 2016

May 15, 2017. District of North Vancouver Utilities Department

Document: 3170932

#### **Table of Content**

| E) | KECUTI | VE SUMMARY                                          | 1    |
|----|--------|-----------------------------------------------------|------|
| 1  | SOL    | JRCE WATER                                          | 2    |
| 2  | DN۱    | / DISTRIBUTION SYSTEM & QUALITY TESTING             | 2    |
|    | 2.1    | General                                             | 2    |
|    | 2.2    | Sampling and Testing                                | 2    |
| 3  | RES    | ULTS                                                | 5    |
|    | 3.1    | Weekly Bacteriological Parameters                   | 5    |
|    | 3.2    | Weekly Chemical Parameter                           | 5    |
|    | 3.3    | Weekly Physical Parameters                          | 6    |
|    | 3.4    | Quarterly Disinfection By-products                  | 8    |
|    | 3.5    | Semi-Annual Metals.                                 | 9    |
|    | 3.6    | Special Samples                                     | 9    |
| O  | PERATI | ONS, MAINTENACE & CAIPTAL PROGRAMS                  | 10   |
|    | 3.7    | Water System Scheduled Maintenance                  | 10   |
|    | 3.8    | Capital Upgrades                                    | 10   |
|    | 3.9    | Operator Training & Qualification                   | 12   |
| 4  | ISSU   | JES, INCIDENTS & RESPONSE PLANS                     | 12   |
| Α  | PPENDI | X A: Water System, Sample Sites and Sample Schedule | 18   |
| Α  | PPFNDI | X B: Analysis Results by Sample Site 2012 - 2016    | . 22 |

#### **EXECUTIVE SUMMARY**

This report is the sixteenth Drinking Water Quality Annual Report prepared by the DNV and provides DNV water consumers with information about the quality of their potable water and the programs that supported the drinking water system. Submission of this report to the Office of the Medical Health Officer for North Shore Vancouver Coastal Health fulfills a regulatory obligation under the Drinking Water Protection Regulation and supports our application to the Medical Health Officer for our annual Drinking Water System Permit to operate a potable water system. It adheres to Metro's "Water Quality Monitoring And Reporting Plan For The GVRD and Member Municipalities — 2006", a template for all municipalities within Metro Vancouver to report annually on water quality results and issues.

Metro and the DNV employ a multi-barrier science based approach that encompasses water from the source to the point of delivery to consistently deliver a reliable supply of safe drinking water. All potable water supplied to DNV was treated through Metro's Seymour Capilano Filtration Plant. In 2016, 99.98% of the District of North Vancouver (DNV) water samples met or exceeded regulatory requirements. The combined efforts of the Greater Vancouver Water District (GVWD or Metro) and the DNV once again resulted in an excellent year for water quality for our customers.

Page 11

Document: 3170932

#### 1 SOURCE WATER

Metro supplies the DNV with 100% of its potable water from their Capilano and Seymour surface water reservoir sources. Metro uses multiple barriers to protect safe drinking water including watershed protection, water treatment, sampling and testing and ongoing operation of the water transmission system.

Prior to 2009, Metro's only form of treatment for both the Capilano and Seymour sources was primary disinfection using chlorine. In 2010 all Seymour water was treated at the Seymour Capilano Filtration Plant (SCFP). In 2015 the twin tunnel delivery system was brought into full operation linking the Capilano water source to the SCFP. This milestone significantly reduced historic water quality issues and concerns.

Metro analyses source water for bacteriological, chemical and physical parameters according to the "BC Safe Drinking Water Regulation" (the regulation) and the "Water Quality Monitoring And Reporting Plan For The GVRD and Member Municipalities – 2006" (the plan). The "2016 - GVWD Quality Control Annual Report" summarises water quality for all of the Metro Vancouver service area and is made available on their website <a href="www.metrovancouver.org">www.metrovancouver.org</a>. The report demonstrates that drinking water supplied by Metro to DNV met or exceeded all water quality standards and guidelines in 2016.

#### 2 DNV DISTRIBUTION SYSTEM & QUALITY TESTING

#### 2.1 General

The DNV water distribution system delivers potable water to its customers via a waterworks system incorporating approximately 364 km of water mains, 7 water pumping stations, 11 water storage reservoirs, and 36 pressure reducing stations. A population of approximately 88,000 is served through approximately 21,000 service connections.

In 2016, Metro delivered 19.2 million cubic metres of water to the DNV distribution system through nineteen different connections. A map of the overall water system, showing pressure zones is included in Appendix A.

#### 2.2 Sampling and Testing

Sampling is performed in three scheduled categories according to the requirement of the Drinking Water Protection Regulation (the Regulation),

- 1. **Weekly:** Bacteriological, Chemical and Physical Parameters.
- 2. Quarterly: Disinfection by-products
- 3. Semi Annually: Metals.

Health Canada's Guideline for Drinking Water Quality (the Guideline) set the maximum acceptable concentrations for sample quality parameters.

All samples are collected by DNV staff and transported to the certified Metro lab for analysis and reporting with the exception of temperature and free chorine residual, which are analysed and recorded by DNV staff at the time of sampling. Appendix A includes a map of the overall water system with sampling site labeled, a list of the sample site locations and the annual sampling schedule.

#### Weekly Samples

In 2016 DNV staff collected a total of 1330 regular scheduled samples from 39 sample sites or an average of 111 samples per month. This exceeds the Regulations population based sample requirement for DNV of 34 sites and 86 samples per month. Sample collection is scheduled weekly on a rotating basis using strategic grouping of sample sites distributed across the district. Typically 13 samples are collected twice each week for a total of 26 samples per week.

Locations of weekly sample points are distributed according to the regulation recommendations as follows;

- 10% of sampling points at "source" (supply points off Metro transmission mains)
- 40% of sampling points at locations with medium flow
- 40% of sampling points at locations with low flow
- 10% of sampling points at system dead-ends (very low flow)

Weekly Samples are analysed in three categories bacteriological, chemical and physical parameters.

- Bacteriological parameters tested include Escherichia coli (E coli), total coliform and heterotrophic plate count (HPC).
- Chemical parameter is free chlorine residual.
- Physical parameters tested are turbidity and temperature.

Figure 1 below shows the number of sample collection on a monthly basis.

#### DISTRICT OF NORTH VANCOUVER - 2016

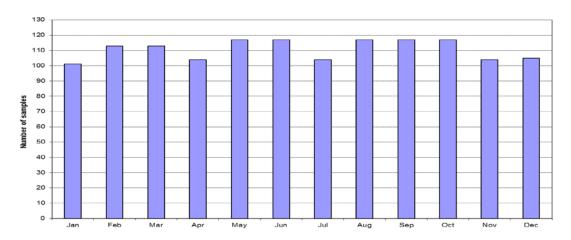



Figure 1. Number of Scheduled Weekly Samples Collected

#### Disinfection By-Products

Haloacetic acids (HAA) and Trihalomethanes (THM) are by-products of the water treatment with chorine. The Guideline maximum allowable concentrations for the running quarterly averages are 0.08 for HAA and 0.1 mg/L for THM.

DNV staff collected 16 samples for disinfection by-product testing of in conformance with the regulation.

A measurement of pH in the distribution system is made at the same time as the disinfection by-products at one of the four locations on a quarterly basis. The Guideline does not provide a required value but sets a target range of 7.0-10.5 and is primarily for corrosion control.

#### Semi-Annual Metal Samples

In 2016 DNV staff collected eight samples for analysis at 4 locations for metal testing in conformance with regulatory requirements.

#### Special Samples

In addition to the scheduled weekly, quarterly and semi-annual samples special samples are collected and analysed when warranted for water quality complaint, operational concern or maintenance activity. The majority of complaints in the DNV are for discolored water. All water quality complaints are investigated with the vast majority ultimately determined to be a direct and unintentional consequence of DNV activities such as water main flushing or hydrant flow testing. In 2016 a total of 85 special samples were collected and analysed.

#### 3 RESULTS

The DNV water sampling program meets the regulatory requirements for sample location, testing frequency and sample quantity. Samples results are provided by Metro to DNV on a weekly basis and reviewed internally upon receipt. The weekly sample results (free chlorine residual, total Coliform, Ecoli, HPC, turbidity and temperature) for each sample site are presented Appendix B. A summary of the results on a parameter by parameter basis is provided below.

#### 3.1 Weekly Bacteriological Parameters

Bacteriological standards for water distribution systems are dictated by the requirements of the regulation and the Health Canada's <u>Guidelines for Canadian Drinking Water Quality</u> which provide the following criteria:

- E. coli: Zero detectable E. coli per 100 mL sample.
- **Total Coliform:** 10 or less total coliform per 100 mL sample and 90% or more of the samples for a given month must have zero detectable total coliform per 100 mL sample.
- **HPC:** No maximum acceptable concentration limit provided. Increases in HPC concentrations above baseline level of 500 CFU/mL s are undesirable.

All samples collected in 2016 met the guidelines for safe drinking water. There were zero occurrences of detectable E-coli or Total Coliform. All samples collected in 2016 were below the recommended maximum HPC. The annual DNV average HPC for the last five years is presented below.

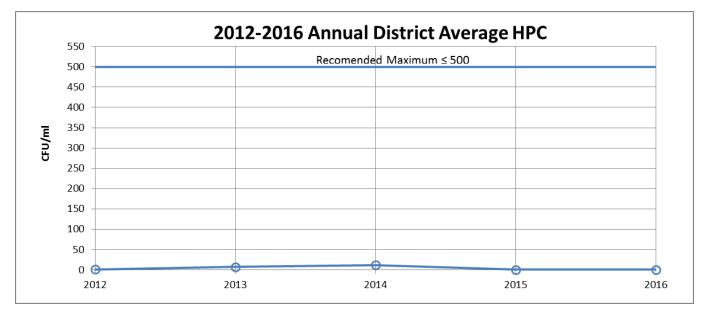



Figure 2. HPC Five Year Annual Averages

#### 3.2 Weekly Chemical Parameter

In 2016 there were zero samples that had less free chorine than the recommended minimum of 0.20 mg/L. The 2016 average chlorine residual was 0.69 mg/L. The annual DNV average free chlorine for the past 5 years is presented below.

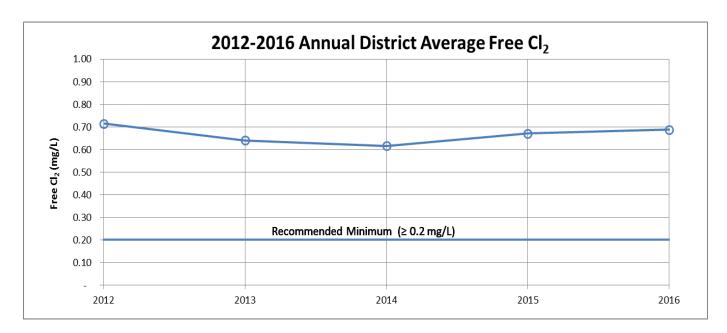



Figure 3. Free Cl2 Five Year Annual Averages.

#### 3.3 Weekly Physical Parameters

#### Turbidity.

The Nephelometric Turbidity Unit (NTU) is used to test and record the turbidity in water. The target NTU is < 1 or "best possible" and should not exceed 5.0 in distribution systems according to the guideline. The average annual turbidity for 2016 was 0.2 NTU. In 2016 six samples, or 0.5%, from six different locations tested above 1 NTU, two samples tested above 5.0 NTU. All other parameters were within acceptable ranges for all six samples. The next sample for all six locations tested below the target NTU.

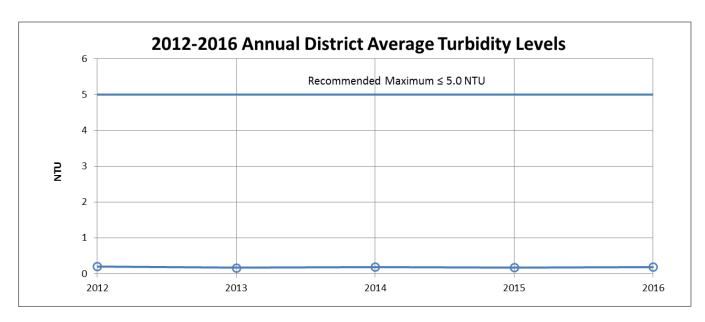



Figure 4. Turbidity Five Year Annual Averages.

#### **Temperature**

The guidelines provide an aesthetic objective for water temperature at less than or equal to 15°C. In 2016, 114 samples or 8.6 % of the samples were above 15°C and occurred during the months of August and September only.

#### 3.4 Quarterly Disinfection By-products

Quarterly disinfection by-products tested were well below guideline limits and are presented below in Table 1. The average pH for our system in 2016 was 7.3.

|         |              |                       | THM (ppb)                                             | HAA (ppb)             |                                                            |  |  |  |  |
|---------|--------------|-----------------------|-------------------------------------------------------|-----------------------|------------------------------------------------------------|--|--|--|--|
| Sample  | Date Sampled | Total Trihalomethanes | Total THM Quarterly Average (Guileline Limit 100 ppb) | Total Haloacetic Acid | Total HAA Quarterly<br>Average<br>(Guileline Limit 80 ppb) |  |  |  |  |
| DNV-727 | 3/1/2016     | 20.7                  | 21                                                    | 19.1                  | 19                                                         |  |  |  |  |
| DNV-727 | 5/31/2016    | 16.1                  | 18                                                    | 15.1                  | 17                                                         |  |  |  |  |
| DNV-727 | 9/1/2016     | 26                    | 21                                                    | 17.2                  | 17                                                         |  |  |  |  |
| DNV-727 | 10/18/2016   | 25                    | 22                                                    | 23.9                  | 19                                                         |  |  |  |  |
|         |              |                       |                                                       |                       |                                                            |  |  |  |  |
| DNV-733 | 3/1/2016     | 25.3                  | 25                                                    | 24.9                  | 25                                                         |  |  |  |  |
| DNV-733 | 5/31/2016    | 24.2                  | 25                                                    | 21.8                  | 23                                                         |  |  |  |  |
| DNV-733 | 9/1/2016     | 32                    | 27                                                    | 20.5                  | 22                                                         |  |  |  |  |
| DNV-733 | 10/18/2016   | 22                    | 26                                                    | 23.1                  | 23                                                         |  |  |  |  |
|         |              |                       |                                                       |                       |                                                            |  |  |  |  |
| DNV-734 | 3/1/2016     | 21.6                  | 22                                                    | 21.1                  | 21                                                         |  |  |  |  |
| DNV-734 | 5/31/2016    | 16.8                  | 19                                                    | 19                    | 20                                                         |  |  |  |  |
| DNV-734 | 9/1/2016     | 24                    | 21                                                    | 16.4                  | 19                                                         |  |  |  |  |
| DNV-734 | 10/18/2016   | 25                    | 22                                                    | 25.3                  | 20                                                         |  |  |  |  |
|         |              |                       |                                                       |                       |                                                            |  |  |  |  |
| DNV-736 | 3/1/2016     | 21.7                  | 22                                                    | 24.9                  | 25                                                         |  |  |  |  |
| DNV-736 | 5/31/2016    | 19.5                  | 21                                                    | 23.2                  | 24                                                         |  |  |  |  |
| DNV-736 | 9/1/2016     | 27                    | 23                                                    | 18.1                  | 22                                                         |  |  |  |  |
| DNV-736 | 10/18/2016   | 15                    | 21                                                    | 23.9                  | 23                                                         |  |  |  |  |

Table 1. Quarterly Disinfection By-products 2016 Results

#### 3.5 Semi-Annual Metals.

A total of eight samples for metals, including copper, lead and zinc, were collected from four locations in 2016. Sample locations, results, and maximum concentrations are given in Table 2 below. All samples tested for metals were below the maximum acceptable concentration guidelines for Canadian Drinking Water Quality. Where no guideline value is provided it is because Health Canada has determined that there is currently no scientific evidence of detrimental health effects at the levels typically found in drinking water.

|                      | Site ID                                                                                                   | DNV-                 | 721             | DN             | V-730            | DNV-           | 734              | DNV-747        |                  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------|-----------------|----------------|------------------|----------------|------------------|----------------|------------------|--|--|--|
|                      | Site Description         2838 Panorama Dr.           Sample Date         5/17/2016 7:45         10/27/201 |                      | rama Dr.        | Braemar        | Reservoir        | 1181 We        | st 22nd          | 1231 Lenn      | ox St. PRV       |  |  |  |
| Parameter: Guideline | Sample Date                                                                                               | 5/17/2016 7:45       | 10/27/2016 8:50 | 5/17/2016 8:45 | 10/27/2016 11:35 | 5/17/2016 9:10 | 10/27/2016 11:55 | 5/17/2016 8:05 | 10/27/2016 10:35 |  |  |  |
| Limit (μg/L)         | Sample Type                                                                                               | REG - GRAB           | REG - GRAB      | REG - GRAB     | REG - GRAB       | REG - GRAB     | REG - GRAB       | REG - GRAB     | REG - GRAB       |  |  |  |
| Aluminum Total       | 200 μg/L *                                                                                                | 24                   | 40              | 22             | 39               | 22             | 34               | 23             | 43               |  |  |  |
| Antimony Total       | 6 μg/L                                                                                                    | <0.5                 | <0.5            | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Arsenic Total        | 10 μg/L                                                                                                   | <0.5                 | <0.5            | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Barium Total         | 1000 μg/L                                                                                                 | 3.1                  | 3.5             | 2.5            | 3.2              | 2.6            | 3.3              | 2.5            | 3.3              |  |  |  |
| Boron Total          | 5000 μg/L                                                                                                 | <10                  | <10             | <10            | <10              | <10            | <10              | <10            | <10              |  |  |  |
| Cadmium Total        | 5 μg/L                                                                                                    | <0.2                 | <0.2            | <0.2           | <0.2             | <0.2           | <0.2             | <0.2           | <0.2             |  |  |  |
| Calcium Total        | none                                                                                                      | 3370                 | 3440            | 3060           | 2950             | 3010           | 2860             | 3040           | 2880             |  |  |  |
| Chromium Total       | 50 μg/L                                                                                                   | 0.25                 | 0.26            | 0.23           | 0.25             | 0.21           | 0.21             | 0.23           | 0.21             |  |  |  |
| Cobalt Total         | none                                                                                                      | <0.5 <0.5<br>2.3 1.2 |                 | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Copper Total         | 1000 μg/L                                                                                                 |                      |                 | 0.7            | 0.6              | 6.8            | 8.2              | <0.5           | <0.5             |  |  |  |
| Iron Total           | ≤300 μg/L                                                                                                 | 10                   | 22              | 5              | 9                | 6              | 14               | <b>\</b> 5     | <5               |  |  |  |
| Lead Total           | 10 μg/L                                                                                                   | <0.5                 | <0.5            | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Magnesium Total      | none                                                                                                      | 140                  | 141             | 151            | 150              | 152            | 152              | 155            | 155              |  |  |  |
| Manganese Total      | ≤ 50 µg/L                                                                                                 | 1.2                  | 1.8             | 1.9            | 4.6              | 4.2            | 3.5              | 2.6            | 4.3              |  |  |  |
| Mercury Total        | 1.0 μg/L                                                                                                  | <0.05                | <0.05           | <0.05          | <0.05            | <0.05          | <0.05            | < 0.05         | <0.05            |  |  |  |
| Molybdenum Total     | none                                                                                                      | <0.5                 | <0.5            | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Nickel Total         | none                                                                                                      | <0.5                 | <0.5            | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Potassium Total      | none                                                                                                      | 146 185              |                 | 144            | 189              | 146            | 187              | 143            | 181              |  |  |  |
| Selenium Total       | 50 μg/L                                                                                                   | <0.5 <0.5            |                 | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Silver Total         | none                                                                                                      | <0.5 <0.5            |                 | <0.5           | <0.5             | <0.5           | <0.5             | <0.5           | <0.5             |  |  |  |
| Sodium Total         | ≤ 200,000 µg/L                                                                                            | 1350                 | 1540            | 1340           | 1640             | 1360           | 1610             | 1330           | 1600             |  |  |  |
| Zinc Total           | ≤ 5000 µg/L                                                                                               | <3                   | <3.0            | <3             | <3.0             | <3             | <3.0             | <3             | <3.0             |  |  |  |

<sup>\*</sup>No health-based guideline for aluminium has been established in Canada, however where aluminum based coagulants are used in water treatment this operating guideline has been set.

**Table 2. Semi Annual Metal 2016 Results** 

#### 3.6 Special Samples

In 2016 eighty five (85) special samples were collected. Twenty six (26) were in response to customer or staff requests and fifty nine (59) were for operational incidents or capital construction such as water main breaks or water main construction. None of samples tested positive for E.coli or Total Coliform.

#### **OPERATIONS, MAINTENANCE & CAPTAL PROGRAMS**

#### 3.7 Water System Scheduled Maintenance

Scheduled annual system maintenance that supports water quality includes water main flushing, reservoir cleaning programs and water facility inspections. We follow the AWWA flushing program standards and performed unidirectional flushing of 32,300 m of main (9% of the system) in the east side of P2 pressure zone. The west side of the P2 zone is scheduled for 2017.

The DNV uses permanent flushing stations or regularly scheduled flushing to maintain water quality in areas with chronic aesthetic issues related to cast iron pipe material. We are eliminating the stations by upgrading cast iron with our standard ductile iron through our water main replacement program. In 2016 we eliminated two permanent flushing stations leaving three left in our system.

The DNV uses the SCADA system to optimise reservoir filling and retention time to support water turnover and quality.

#### 3.8 Capital Upgrades

The DNV has a fully funded water main replacement program that uses a risk based protocol with seventeen weighted hazard criteria. The DNV's water main replacement program takes into consideration multiple parameters to prioritise the annual replacement schedule. The DNV standard replacement water main is ANSI/AWWA C151 & C140 special class 50 cement lined ductile iron pipe and specified in our Design Guidelines of our Development Servicing Bylaw.

Our prioritization protocol weighs the potential of failure, consequence of failure, and water quality heavily. The 2016 DNV construction crews completed the replacement of 6,334 metres of pipe. In addition Metro Vancouver contractors replaced 2,480 m of DNV water main as part of a larger Metro Main #4 main replacement project.

The following two tables list the water main replaced in 2016 and the replacement plan for 2017 respectively.

| Street                    | From                      | То                        | Length (m) |
|---------------------------|---------------------------|---------------------------|------------|
| W 15 <sup>th</sup> Street | McGuire Avenue            | Pemberton Avenue          | 846        |
| McGuire Avenue            | W 15 <sup>th</sup> Street | Marine Drive              | 173        |
| Fernwood Crescent         | Sowden Street             | Sowden Street             | 238        |
| Cortell Street            | W 21 <sup>st</sup> Street | W 22 <sup>nd</sup> Street | 126        |
| W 22 <sup>nd</sup> Street | Cortell Street            | DNV/CNV Boundary          | 69         |
| W 23 <sup>rd</sup> Street | Philip Avenue             | Bridgeman Avenue          | 188        |
| Quinton Place             | Carolyn Drive             | Quinton Place             | 112        |
| Verona Place              | Delbrook Avenue           | End of Cul-de-sac         | 128        |
| W Queens Road             | Delbrook Avenue           | Mahon Avenue              | 675        |
| St Albans Avenue          | E Rockland Road           | North end of Cul-de-sac   | 223        |
| St Pauls Avenue           | St Albans Avenue          | St Pauls Avenue           | 54         |
| E Braemar Rd              | 189 E Braemar Rd          | 191 E Braemar Rd          | 32         |
| St Andrews Avenue         | E Kings Road              | E St James Road           | 209        |
| Shakespeare Avenue        | Dryden Way                | Tennyson Crescent         | 117        |
| Sunnyhurst Road           | Ross Road                 | 3030 Sunnyhurst Road      | 32         |
| Dempsey Road              | Lynn Valley Road          | Underwood Avenue          | 148        |
| Burrill Avenue            | Phyllis Road              | End of Cul-de-sac         | 120        |
| Adderley Street           | Gladstone Avenue          | Brooksbank Avenue         | 258        |
| Swinburne Avenue          | Berkley Road              | End of Cul-de-sac         | 155        |
| Golf Drive                | Fairway Drive             | End of Cul-de-sac         | 257        |
| Loach Place               | Golf Drive                | End of Cul-de-sac         | 88         |
| Fairway Drive             | Golf Drive                | Cummins Place             | 138        |
| Mountain Highway          | Lynn Valley Road          | 3275 Mountain Highway     | 134        |
| Capilano Road             | Prospect Avenue           | Edgemont Boulevard        | 2301       |
| Teviot Place              | Capilano Road             | End of Cul-de Sac         | 91         |
| Riviere Place             | Edgemont Boulevard        | End of Cul-de Sac         | 203        |

Table 3. Water Main Replaced in 2016 by DNV

| Street                    | From                      | То                   | Length (m) |
|---------------------------|---------------------------|----------------------|------------|
| Oakwood Crescent          | Tatlow Avenue             | Tatlow Avenue        | 502        |
| W 20 <sup>th</sup> Street | Bridgman Avenue           | Pemberton Avenue     | 198        |
| Sunnyside Drive           | Gladwin Drive             | 1381 Sunnyside Drive | 124        |
| Ranger Avenue             | Sarita Avenue             | 5436 Ranger Avenue   | 193        |
| Clements /Cliffridge Ave  | Prospect Avenue           | End of Clements CDS  | 215        |
| Arundel/Cheviot Rd        | Lions Avenue              | End of Arundel CDS   | 353        |
| Tudor Avenue              | Chelsea Crescent          | Canterbury Crescent  | 133        |
| Sunnycrest Drive          | Glenview Crescent         | Highlands Boulvard   | 224        |
| Starlight/Newdale         | 4355 Starlight Way        | Beaver Road          | 587        |
| Croydon Place             | Delbrook Road             | End of Cul-de-sac    | 42         |
| W Windsor Road            | Stanley Avenue            | Mahon Avenue         | 395        |
| Wellington Drive          | St Andrews                | End of Cul-de-sac    | 78         |
| E Kensington Road         | St Andrews                | End of Cul-de-sac    | 91         |
| Selby Road                | Kilmer Road               | End of Cu-de-sac     | 140        |
| Macginnis Avene           | Frederick Road            | Wellington Drive     | 205        |
| Dovercourt Road           | Mountain Highway          | Macginnis Avenue     | 236        |
| Wellington Drive          | Mountain Highway          | Macginnis Avenue     | 240        |
|                           |                           | 3275 Mountain        |            |
| Mountain Highway          | Frederick Road            | Highway              | 314        |
| Fromme Road               | E 27 <sup>th</sup> Street | End of Cul-de-sac    | 173        |
| Phyllis Road              | Lynn Valley Road          | Burrill Avenue       | 468        |
| Hoskins Road              | Arborlynn Drive           | Torquay Avenue       | 733        |
| Appin Road                | E 14 <sup>th</sup> Street | Alderlynn Drive      | 234        |
| Lytton Street             | Violet Street             | Lytton Place         | 55         |
| Belloc Street             | Berkley Road              | 2592 Belloc Street   | 273        |
| Keats Road                | Berkley Road              | End of Cul-de-sac    | 128        |

**Table 4. Proposed Water Main Replacement 2017** 

#### 3.9 Operator Training & Qualification

The DNV's distribution system is EOCP classified as a Level 3 system. The DNV currently has distribution system operators with Level 3 operator's certification from the EOCP, keeping the DNV in full compliance with the Regulation.

#### 4 ISSUES, INCIDENTS & RESPONSE PLANS

#### **Issues**

There were no significant water quality events in 2016.

We responded to 21 emergency water main breaks in 2016. Water main break response protocol includes maintain positive pressure to protect the water system from potential contamination.

Challenges facing the DNV in 2016 for maintaining good water quality in the distribution system were ensuring that water system maintenance and replacement programs have the greatest possible positive effect on maintaining good water quality, while at the same time achieving target levels for infrastructure repair and replacement. The capital, operating and maintenance budgets along with the staffing and management of related programs continue be a high priority for the DNV.

#### Security

There were no security threats to the DNV system in 2016.

DNV water storage reservoirs and pumping facilities have secured access, intrusion detection linked to the automated SCADA alarm system and designed fail safe valve operation to inhibit or reduce the impact of security threats. Assessments of new technology and improved systems to protect DNV water supply facilities are ongoing.

### Notification & Emergency Response

The table below outlines the notification process for unusual situations that could potentially affect water quality

| NOTIFICATION FOR UNUSUAL SITUATIONS POTENTIALLY AFFECTING WATER QUALITY |                                                        |                                                                     |                                                                            |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Situation                                                               | Notifying<br>Agency                                    | Agency Notified                                                     | Time Frame For Notification                                                |  |  |  |  |  |  |  |  |  |
| E. coli -positive sample                                                | M.V. Laboratory<br>or BC Centre for<br>Disease Control | DNV and Vancouver<br>Coastal Health<br>(North Shore)                | Immediate                                                                  |  |  |  |  |  |  |  |  |  |
| Total coliform<br>over 10 mg/L<br>and no free<br>chlorine residual      | DNV                                                    | Vancouver Coastal<br>Health (North<br>Shore)                        | Immediately upon receipt of sample test results                            |  |  |  |  |  |  |  |  |  |
| Chemical<br>Contamination                                               | DNV                                                    | Vancouver Coastal<br>Health (North<br>Shore)                        | Immediate                                                                  |  |  |  |  |  |  |  |  |  |
| Turbidity > 5<br>NTU                                                    | M.V. Laboratory or GVWD Operations                     | DNV and Vancouver<br>Coastal Health<br>(North Shore)                | Immediate                                                                  |  |  |  |  |  |  |  |  |  |
| GVRD<br>Disinfection<br>failure                                         | GVWD<br>Operations                                     | DNV and Vancouver<br>Coastal Health<br>(North Shore)                | Immediate in any situation in which the BCSDWR or the GCDWQ may not be met |  |  |  |  |  |  |  |  |  |
| Loss of pressure<br>due to high<br>demand                               | DNV                                                    | GVWD Operations<br>and Vancouver<br>Coastal Health<br>(North Shore) | Immediate                                                                  |  |  |  |  |  |  |  |  |  |
| Watermain<br>break where<br>contamination is<br>suspected               | DNV                                                    | Vancouver Coastal<br>Health (North<br>Shore)                        | Immediate                                                                  |  |  |  |  |  |  |  |  |  |

Table 5. Water Quality Notification

#### Response Plans

The flow diagram below illustrates the process that has been put in place for response to incidents that could potentially affect water quality during a loss of system integrity. Additional or cascading response protocols are outlined after the chart.

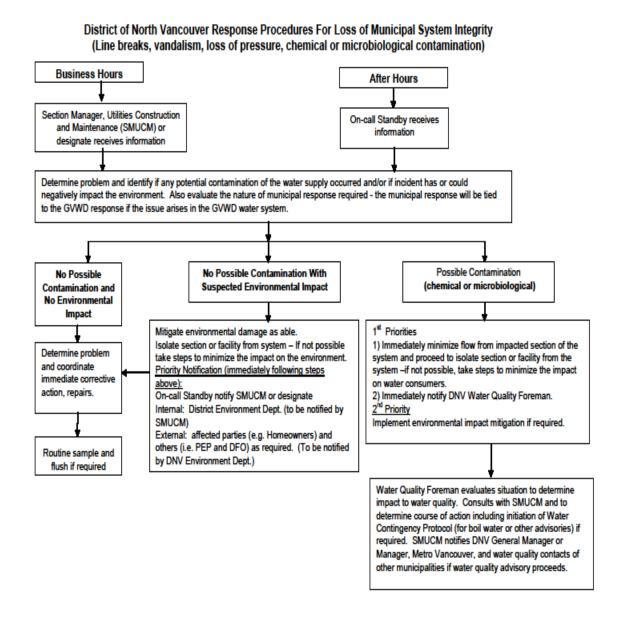



Figure 5. Loss of System Integrity Response

#### Watermain Breaks

Water main breaks pose an increased risk for potential contamination. Reponses procedure and repair practices are in place to reduce the risk of contamination. In instances where chemical or microbiological contamination of the system is suspected, DNV Utilities crews will make adjustments to isolate the section or facility from the system. The DNV will immediately consult with Vancouver Coastal Health (North Shore) regarding further actions, and all water quality complaints from the public will be immediately and thoroughly investigated for potential contamination.

For all watermain breaks, water samples will be taken from the vicinity of the break and tested for bacteriological, chemical and physical parameters.

#### • Turbidity Events

Turbidity in the DNV water distribution system is monitored on a regular basis through the water sampling program. Water sampling results yielding readings greater than 1 NTU are scrutinized, along with corresponding free chlorine. Any areas from which high turbidity results originate will be flushed and re-sampled for free chlorine and turbidity.

#### • Loss of Pressure Due to High Demand

In the event of adverse pressure loss due to high demand, DNV Utilities crews will make adjustments to the system to isolate the section or facility from the system and then take measures to supplement pressure in the affected area. The DNV will immediately consult with GVWD and Vancouver Coastal Health (North Shore) regarding further actions, and all water quality complaints from the public will be immediately and thoroughly investigated for potential contamination.

#### • Positive E-coli Results

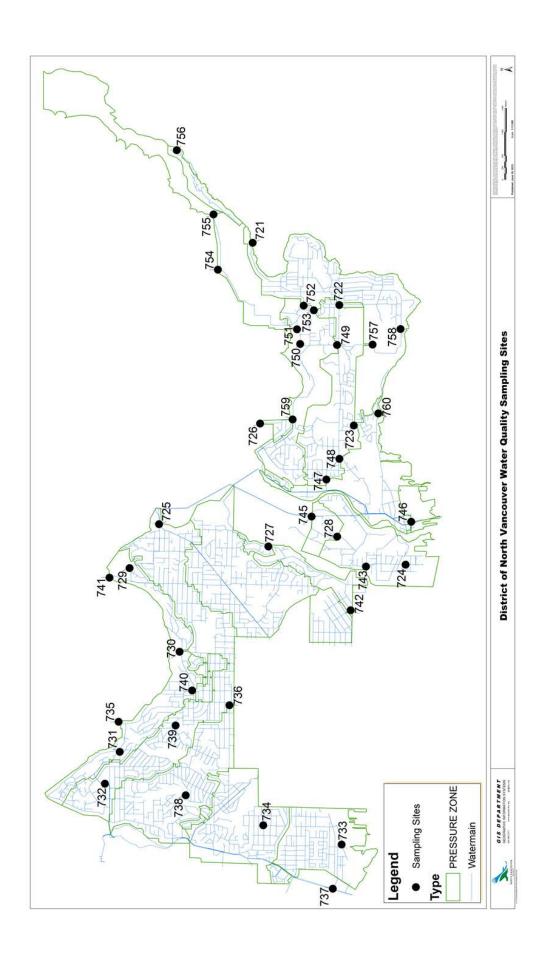
If a sample submitted from DNV and analysed by the Metro Vancouver laboratory or the BC Centre for Disease Control tests positive for E. coli, the following response plan will be put into action.

- i) Results of interim samples, if any, from the site will be examined by the lab. Interim samples are any samples that may have been taken from the site in the period between when the E. coli -positive sample was taken and when it was determined to be positive.
- ii) The chlorine residual noted on the sampler's field sheet will be reviewed by the lab and compared to previous readings to determine if there had been a localized loss of disinfectant residual.
- iii) The DNV Section Manager of Utilities Construction and Maintenance (SMUCM) or designate and Vancouver Coastal Health (North Shore) will be notified immediately by the laboratory.

- iv) Arrangements will be made for the immediate collection of a repeat sample (including, where possible, samples from upstream and downstream of the positive sample location).
- v) Vancouver Coastal Health (North Shore) will be contacted and the need for a "boil water" advisory will be evaluated.
- vi) If a "boil water" advisory is warranted, the public notification process as outlined in the Water Quality Monitoring And Reporting Plan For The GVRD and Member Municipalities will be followed.
- vii) The lab will contact the DNV with repeat sample results and the results of the species identification tests. The DNV will contact Vancouver Coastal Health (North Shore) to evaluate these results and to determine whether or not the advisory can be lifted.

#### • Chemical Contamination

In the event of chemical contamination in the DNV water distribution system, Vancouver Coastal Health (North Shore) will be immediately notified. Immediate steps will be taken to isolate the contaminated area and the level of contamination will be determined through water sampling and testing. The chemical will be identified and any public health risk factors associated with the chemical presence will be determined. Through consultation with Vancouver Coastal Health (North Shore), a public advisory will be carried out.

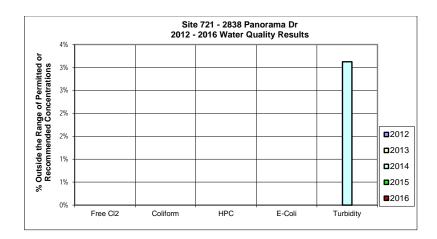

#### Source Water Event

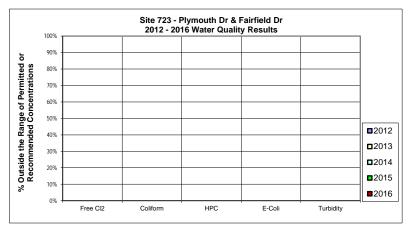
In 2007 a task force comprised of Metro Vancouver, Vancouver Coastal Health, Fraser Health and member municipalities developed a communications template for source water major turbidity events. The template outlines the responsibilities of Metro Vancouver, the Health Authorities, and municipalities for notification and communications to each other and the public.

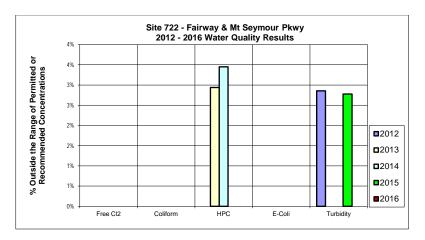
#### • GVRD Disinfection Failure

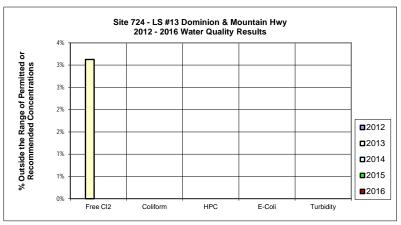
Upon notification by GVWD Operations that an interruption in disinfection has occurred, DNV Water Quality personnel will immediately commence monitoring free chlorine residual levels at strategic locations and will contact the Vancouver Coastal Health (North Shore) if continued loss of residual is observed.

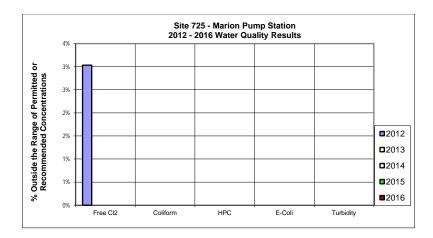
## **APPENDIX A: Water System, Sample Sites and Sample Schedule.**





| Site | Lab |                                                                   |           |
|------|-----|-------------------------------------------------------------------|-----------|
| I.D. | No. | Sample Site Location                                              | Flow Rate |
| 1    | 721 | 2838 Panorama Dr.                                                 | Low       |
| 2    | 722 | Fairway & Mt Seymour Pkwy.                                        | Medium    |
| 3    | 723 | Plymouth Dr & Fairfield Dr.                                       | Low       |
| 4    | 724 | LS #13 Dominion & Mountain Hwy.                                   | Low       |
| 5    | 725 | Marion Pump Station                                               | Source    |
| 6    | 726 | Hyannis Reservoir                                                 | Low       |
| 7    | 727 | Hoskins Rd & Kilmarnock Cres.                                     | Medium    |
| 8    | 728 | Lillooet Road                                                     | Low       |
| 9    | 729 | Ramsay Pump Station                                               | Medium    |
| 10   | 730 | Braemar Reservoir                                                 | Low       |
| 11   | 731 | Skyline Pump Station                                              | Medium    |
| 12   | 732 | Sarita Pump Station                                               | Source    |
| 13   | 733 | McKeen Ave & Phillip Ave.                                         | Medium    |
| 14   | 734 | Pemberton Heights                                                 | Low       |
| 15   | 735 | Prospect Reservoir                                                | Medium    |
| 16   | 736 | PRV #4 (W Queens Rd. & Lonsdale Ave.)                             | Dead End  |
| 17   | 737 | N. of BC Rail Tracks just East of Lower Cap. Rd.                  | Source    |
| 18   | 738 | 3906 Sunnycrest Dr.                                               | Medium    |
| 19   | 739 | 376 Cartelier Rd.                                                 | Medium    |
| 20   | 740 | PRV #5 (190 E. Braemar Rd.)                                       | Medium    |
| 21   | 741 | Mountain Hwy Reservoir (North up access Rd., N. of Mountain Hwy.) | Low       |
| 22   | 742 | PRV # 11 (Across from 1086 Cloverly St.)                          | Source    |
| 23   | 743 | PRV #7 (N across from 481 Mountain Highway)                       | Dead End  |
| 24   | 744 | Not in use                                                        |           |
| 25   | 745 | PRV # 13 (N. of 1388 Monashee Drive (Capilano College))           | Source    |
| 26   | 746 | PRV #17 (60 Riverside Dr.)                                        | Medium    |
| 27   | 747 | PRV # 19 (1231 Lennox St.)                                        | Dead End  |
| 28   | 748 | PRV # 16 (2592 Bendale Rd.)                                       | Dead End  |
| 29   | 749 | PRV # 18 (3728 Mt. Seymour Parkway)                               | Low       |
| 30   | 750 | up path behind 1610 Mt. Seymour Rd.                               | Medium    |
| 31   | 751 | Access Rd, N. end of Cascade Ct.                                  | Low       |
| 32   | 752 | PRV # 25 (4068 Deane Pl.)                                         | Medium    |
| 33   | 753 | PRV # 20 (1501 Theta Ct.)                                         | Low       |
| 34   | 754 | Woodlands reservoir (2.1 km N. of Hixon Rd. on Indian River Dr.)  | Low       |
| 35   | 755 | PRV # 26 3.7 km NE of Hixon Rd. on Indian River Dr.               | Low       |
| 36   | 756 | End of Fire Lane # 7 (Firelane #7 is 3.6 km from Hixon Rd.)       | Dead End  |
| 37   | 757 | PRV 200 m south of 879 Roche Point Dr.                            | Medium    |
| 38   | 758 | 3860 Dollarton Hwy.                                               | Medium    |
| 39   | 759 | Hyannis Pump Station (1919 Hyannis drive)                         | Low       |
| 40   |     | 3000 Block Dollarton Hwy.                                         | Low       |


# DISTRICT OF NORTH VANCOUVER WATER QUALITY SAMPLING AND REPORTING CALENDAR - 2016


|                                                                 |   |            |          |            | 1 |     |  |     |  |     | 1 |     | 1 |     | 1 |     |   |          | 1 |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
|-----------------------------------------------------------------|---|------------|----------|------------|---|-----|--|-----|--|-----|---|-----|---|-----|---|-----|---|----------|---|-----|--|-----|--|----------|--|-----|--|-----|--|----|---|----|---|----|---|----|----|----|---|-----------|----|----|---|----|---|----|---|----|---|----|
|                                                                 | J | <u>Jan</u> |          | <u>Jan</u> |   | Jan |  | Jan |  | Jan |   | Jan |   | Jan |   | Jan |   | Jan      |   | Jan |  | Jan |  | Jan      |  | Jan |  | Jan |  | eb | M | ar | Α | pr | M | ay | Jı | un | J | <u>ul</u> | Αı | ug | S | ер | 0 | ct | N | VC | D | ec |
| DISTRIBUTION<br>SYSTEM SAMPLING                                 |   |            |          |            |   |     |  |     |  |     |   |     |   |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| bacteria, turbidity,<br>chlorine, temperature<br>(twice weekly) |   |            |          |            |   |     |  |     |  |     |   |     |   |     |   |     |   | XX<br>XX |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| HAA's, THM's, pH<br>(quarterly)                                 |   |            |          |            | Х |     |  |     |  | Х   |   |     |   |     |   |     | X |          |   | Х   |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| metals - copper, lead,<br>zinc                                  |   |            |          |            |   |     |  |     |  | Х   |   |     |   |     |   |     |   |          |   | Х   |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| (semi-annually)                                                 |   |            |          |            |   |     |  |     |  |     |   |     |   |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| NOTIFICATION  Annual Report:                                    |   |            |          |            |   |     |  |     |  |     |   |     |   |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| Annual report sent to MHO                                       |   |            |          |            |   |     |  | Х   |  |     |   |     |   |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| MHO sends Council<br>his response                               |   |            |          |            |   |     |  |     |  | х   |   |     |   |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| Staff report to Council                                         |   |            |          |            |   |     |  |     |  |     |   |     | х |     |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
| Posted on Web                                                   |   |            |          |            |   |     |  |     |  |     |   |     |   | х   |   |     |   |          |   |     |  |     |  |          |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |
|                                                                 |   |            | <u> </u> |            |   |     |  | 1   |  |     |   |     |   |     |   |     | l |          |   |     |  |     |  | <u> </u> |  |     |  |     |  |    |   |    |   |    |   |    |    |    |   |           |    |    |   |    |   |    |   |    |   |    |


# **APPENDIX B: Analysis Results by Sample Site 2012 - 2016**

